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Abstract 

It is pointed out that there is some uncertainty as to the 
correct behaviour of the integrated reflectivity as a 
function of the degree of asymmetry for the scattering 
of X-rays from imperfect crystals in the extremely 
asymmetric Bragg case. Numerical calculations based 
on the Takagi-Taupin equations are exemplified and 
indicate that the integrated reflectivity for such crystals 
tends asymptotically to the perfect-crystal result in the 
asymmetric limits, the perfect-crystal result, in turn, 
tends to the kinematical value at these limits, as has 
been shown previously. In addition, comments are 
offered on the relevance of the present work to the 
study of highly imperfect crystals by section 
topography, and in particular to the study of the near- 
surface grain-boundary structure of crystals. 

Introduction 

Recently, Mathieson (1976, 1977) has proposed that 
the extremely asymmetric Bragg case offers an experi- 
mental means for deriving structure factors which is, in 
principle, free from extinction. The approach is based 
on the identification of the asymmetric limits (fl = 
cot O n tan ct --, + 1, where O n is the Bragg angle and a is 
the asymmetry angle taken as the acute angle between 
the surface and the Bragg planes, see Fig. 1) as zero- 
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Fig. 1. Schematic illustration of the scattering geometry in the plane 
of diffraction, also showing multiple scattering paths in the 
crystal. The vertices of the scattering paths occur as evaluation 
points in the numerical solution procedure. 
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extinction limits and requires that data be collected 
from a given crystal for I fll -+ 1 and extrapolated to the 
appropriate limit. The two asymmetric limits are 
characterized by grazing incidence (fl --, - 1 )  and 
grazing emergence (fl --, + 1), see for example Fig. 1 in 
Wilkins (1978a). 

Mathieson's method for obtaining extinction-free 
data depends crucially on the establishment of the 
asymmetric limits as extinction-free limits. For perfect 
crystals, the validity of this assumption has been 
demonstrated theoretically by Hirsch & Ramachan- 
dran (1950) and by Wilkins (1978a). However, for 
imperfect crystals, a reading of the literature would 
suggest that the situation is not quite so clear. 

Thus examination of Darwin's (1922)theoretical  
expression for secondary extinction in the asymmetric 
Bragg case (his equation 7.2) shows that PDar/Pl 4-> 1 as 
fl --, + 1, where/9oa r denotes the integrated reflectivity in 
Darwin's extinction theory, while Pi is the integrated 
reflectivity for an ideally imperfect crystal (i.e. the 
kinematical approximation value). It should be noted, 
however, that Darwin's approach is implicitly restricted 
to small l al and the concept of correcting integrated 
reflectivities back to the symmetrical case. More 
specifically, a key assumption in Darwin's treatment is 
that the function G(u), giving the scattering per unit 
path length as a function of rocking angle, u, is 
independent of ti and, in particular, that the con- 
tribution of primary extinction (intra-block scattering) 
to G(u) can be determined in the symmetrical Bragg 
case (Darwin's equations 6.12 to 6.15). This latter 
assumption would imply, for example, that for a :~ 0 
one does not regain the perfect-crystal, infinite-thick- 
ness result as the block size goes to infinity. Similar 
assumptions, regarding the form of the scattering per 
unit path length, to those discussed above are also 
embodied in the work of Werner (1965) and Werner & 
Arrott (1965). 

Attempts to improve the Darwin treatment by cal- 
culating the effect of primary extinction on G(u) in the 
asymmetric Bragg case are not very satisfactory in the 
extremely asymmetric regime (Wilkins, 1978b; 
Stephan, 1978) because of the failure of the column 
approximation. 
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The rigorous treatment of X-ray dynamical scatter- 
ing from an imperfect crystal is a difficult problem. 
Kuriyama (1970, 1972) and Kuriyama & Miyakawa 
(1970) have made valuable contributions to this field 
via a quantum-field-theoretical formulation of the 
problem. However, the numerical solution of 
Kuriyama's equations would seem to involve a large 
amount of computer time compared with the more 
approximate Takagi-Taupin equations (Takagi, 1962, 
1969; Taupin, 1964; Kuriyama, 1972) since his 
equations involve an extra angular variable describing 
the spreading out of the diffracted beams due to crystal 
imperfections. For certain classes of models of an 
imperfect crystal, and most particularly for a crystal 
consisting of local mosaic blocks, Kuriyama (1972) 
has indicated that one can expect the solution of 
the Takagi-Taupin equations to be very close to 
the solution of his more accurate equations. In crude 
terms, one might understand this to be so because 
the Takagi-Taupin equations are essentially correct 
for a perfect crystal and so should correctly treat the 
scattering within perfect-crystal mosaic blocks, while 
the boundary conditions between blocks may be incor- 
porated via, say, an appropriate numerical solution 
procedure for the equations, as in the present work. 

Recently, Kato (1976a,b) has shown that 
the Takagi-Taupin equations can be used to provide a 
unified treatment of primary and secondary extinction. 
In particular, Kato showed that for different values of 
the correlation length between lattice distortions, r, one 
may obtain the perfect-crystal result (for r ~ oo), the 
ideally-imperfect-crystal result (for r ~ 0), and a set of 
intensity-coupling equations (for r small). 

The work of the above authors suggests that the 
Takagi-Taupin equations should provide a sound and 
tractable basis for treating dynamical scattering from a 
wide class of imperfect crystals, and in particular for 
investigating the trend in X-ray diffraction properties 
from imperfect crystals in the approach towards the 
asymmetric limits. The main purpose of the present 
note is to present briefly some typical examples of 
results which have been obtained for the variation of 
the integrated reflectivity with degree of asymmetry for 
infinitely thick, imperfect crystals treated in the Bragg 
case and to present the general conclusions reached on 
the basis of such calculations. The results were 
obtained by numerically iterating the Takagi-Taupin 
equations [equations (11) of Kato (1976a)] for given 
states of the (assumed asymmetric) crystal with simul- 
taneous calculation of the diffracted intensities for 
various chosen values of the reduced linear absorption 
coefficient, here defined by 

/~o =/~0/I teal = --2g0/(1 + ~2)1/2, (1) 

where/to is the usual linear absorption coefficient, g = 
~"/" ' is the anomalous dispersion parameter(xh and H//~, H 

x~ relate to the real and imaginary parts of x(r), 

respectively), and 1/go is the level of interaction defined 
by the second equality in (1) (see also Wilkins, 1978a), 
the superior bar serving here and elsewhere in the text 
to denote that lengths are measured in reduced units of 
the inverse coupling coefficient, 1/Ix.I. The coupling 
coefficient, x H, for the H reflexion with structure factor 
F n is given by 

~.K e 2 
K H - -  - -  F H (2) 

V m c  2 

(2 = wavelength, K = polarization factor, v = unit-cell 
volume and e, m and c are the usual physical 
constants). A simplifying assumption made through- 
out the present work is that the refractive index is unity 
(see also Wilkins, 1978a). 

General mosaic block model 

As a very simple model for treating the displacement 
parameter, u(x2, Y2), in the theory, I have assumed a 
mosaic block model in which the two-dimensional 
plane of diffraction is divided into rectangular perfect- 
crystal blocks of uniform linear dimension, i, each of 
which is displaced along the direction of the scattering 
vector H by an amount relative to its neighbours which 
is sampled from a triangular distribution having 
standard deviation a c. The mosaic blocks are also 
subject to an angular tilt about their centroids, which is 
sampled from a triangular distribution having standard 
deviation %. Configurations of the distorted crystal are 
generated from strings of random numbers produced 
by the Fortran subroutine RANF on the CSIRO Cyber 
76 computer. In mathematical terms, the component of 
the displacement field u along the direction of the 
scattering vector, H, the only component relevant in the 
present calculations, is given by 

I J 

u,,(x2,Y2)= Z ~ + Z c~+ (~  + bg(Y¢-~Cu), (3) 
i = l  j = l  

where I and J are the block-lattice indices along the x 2 
and Y2 directions (parallel and perpendicular to Bragg 
planes, respectively, see also Fig. 1) of the block 
containing the field point (-~2, 332) • The coordinate x 2 
denotes the distance from the origin along the direction 
of the Bragg planes, with -~ls being the x 2 coordinate of 
the centroid of the block at block site (I, J). Note that 
for the sake of brevity the subscript 2 is deleted from 
coordinates appearing on the right-hand side of (3). 
The indices i and j run over the block-lattice sites from 
the origin to (I, J). The block shifts c~ and c y are 
generated from a uniform (square) distribution such 
that the resulting triangular distribution of (~  + c~) has 
standard deviation a c. The sum of the (~  + c~) 
produces a random walk, the distribution of the sum 
tending to normal as the number of steps becomes 
large. The tilts b~ and b~ are also sampled from 
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uniform distributions and the resulting t r iangular  dis- 
tribution of  (b] + b y) has  s tandard  deviation at,. For  the 
purposes  of  the present  calculation, the paramete rs  (7 b 
and ere are defined such that  u,, is measured  in units of  
1/I HI = 2/sin 0 s. 

Results and conclusions 

Intensities, I ( ~ ,  on the exit surface for a spherical wave 
[amplitude A 6(sn)] incident at ~ = 0 on given states of  
the crystal  are plotted in Figs. 2 and 3. For  fl = 0 (Fig. 
2) and large l the curves, such as l = 0 .5  and l = 1, 
initially follow the perfect-crystal  result (l = oo), but as 
~/~n becomes larger, detailed structure in the curves 
appears .  For  small l (say l = 0.1),  the curves are highly 
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Fig. 2. Intensity profile I(~)/I(0) [where I(0) = A*AIEHK_HI sin 2 
20 n] along the exit surface of the crystal from the entry point 
measured in units of the extinction length, ~ ,  for a perfect crystal, 
where ~, = 7teas On/[(1 - ~2)l/Z cos (dKHK-HI U2]. The results are 
for the symmetric Bragg case (fl = 0) with the following values 
for the relevant parameters: absorption,/~0 = 0.2; Bragg angle, O n 
= 7r/9; block-tilt standard deviation, cr~ = 1; block-shift standard 
deviation, cr~ = 0.5; block size, l = 0, 0.1, 0-5, 1, and oo. The 
case l = oo corresponds to the perfect-crystal case, while l --- 0 
corresponds to the kinematical approximation. 
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Fig. 3. Mosaic structures as for Fig. 2 but with I (~/1(0) cal- 
culated in an extremely asymmetric case having (1 - flz)l/2 = 
0.3; fl _~ 0.9539. The extinction length ~ is for a perfect crystal 
with the given value for ft. 

oscillatory and lie close to the kinematical  approxi-  
mation result (l --, 0 and cr C :/: 0). In the highly 
asymmetr ic  regime (Fig. 3), marked  changes  in the 
charac ter  of  the I ( ~  curves are apparent  relative to 
those in Fig. 2. Firstly, most  of  the fine s tructure in the 
curves has disappeared.  Secondly,  all the curves tend to 
follow the perfect-crystal  result (i = oo) ra ther  than the 
kinematical  result. F r o m  the results for I ( 0 ,  a 
corresponding plane-wave-case  integrated reflectivity, 
p, was  calculated by integrating the individual I (~)  over 
the exit surface followed by use of  Ka to ' s  equat ion 
(28b). (N.B.  The present use of  this equation implies 
the simplifying assumpt ion that  the integrated 
reflectivity is reasonably  independent of  the precise 
entry point of  the spherical wave on the crystal  
surface.) The results for the extinction factor,  P'ext = 1 
- p/pt (where Pl is the kinematical  approximat ion  
value) are plotted in Fig. 4 against  the a s y m m e t r y  
pa ramete r  (1 - -  # 2 ) 1 / 2  for given values of/~0, i, crb and o e. 
It should be noted that  these results were in fact  all 
derived for the positive a symmet ry  case, but that  there 
exists a statistical form of reciprocity relation between 
the positive and negative a s y m m e t r y  cases which 
shows that  the mean  (ensemble averaged)  value of  ~ext 
depends only on I fll and not on the sign of  fl (Wilkins, 
1980). F r o m  Fig. 4 it can be seen that :  

(i) The extinction factor  for the perfect-crystal  case 
calculated from the T a k a g i - T a u p i n  equat ions agrees 
well (better than 1%) with the corresponding result 
(which is accura te  to 0 -1%)  obtained by integrating the 
plane-wave rocking curves (Wilkins, 1978a). This 
compar ison  suggests that  the accu racy  of  the numerical  
solution method for the T a k a g i - T a u p i n  equat ions with 
the chosen grid-size a r rangement  is p robably  better 
than 1% at each fl for crystals  having arbitrary mosaic  
structure.  
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Fig. 4. Plots o f  extinction factor against asymmetry factor (1 -- 
f12)w2 for the same states of the crystal as in Figs. 2 and 3. The 
curves represent guides to the eye through individual data points 
for a given state of the crystal. For ] = oo, the lower solid curve is 
the result obtained for a perfect crystal using the present method 
of numerically solving the Takagi-Taupin equations, while the 
upper solid curve is that obtained by Wilkins (1978a) from 
numerical integration of the rocking curve. 
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(ii) The extinction factors plotted in Fig. 4 exhibit 
somewhat idiosyncratic behaviour because of the 
sampling of only one member of an ensemble of 
possible mosaic structures. In practice, for a wide 
incident beam one should really average I(~) over 
possible entry positions on the crystal surface. 

(iii) The extinction factor tends to zero as I fll --, 1, 
thereby supporting Mathieson's postulate. 

(iv) The variation in extinction factor with (1 - 
fl2)1/2 is no longer necessarily monotonic as it was for 
infinitely thick, perfect crystals (Wilkins, 1978a). 

(v) The curves for the imperfect-crystal cases 
asymptote as I fll -, 1 to the corresponding perfect- 
crystal result (i.e. the one having the same absorption 
coefficient, structure factor, etc.). 

It should be emphasized at this point that the results 
presented in Fig. 4 are only examples of similar results 
which have been obtained for a thorough range and 
combination of parameter values. Thus it appears that 
the most appropriate mathematical form for the extrap- 
olation of integrated reflectivity data to the asym- 
metric limits is the perfect-crystal or dynamical-theory 
result, although the limit itself is the kinematical value. 
The physical explanation for this behaviour appears to 
lie in the angular acceptance and divergence charac- 
teristics of perfect-crystal scattering volumes as I fll -* l 
(see Table 1 in Wilkins, 1978a). More particularly, it 
appears that the level o f  interaction within each block 
goes to zero as Ifll --, l, while the extent o f  interaction 
(i.e. number of blocks which are diffraction coupled) 
tends to infinity, leading to dominance of dynamical 
behaviour in the approach to the asymmetric limit due 
to the latter factor, before final degeneration to 
kinematical behaviour in the limit due to the former 
factor (Mathieson, 1979). 

It is perhaps interesting to note that results of the 
type presented in Figs. 2 and 3 suggest that a 
potentially useful technique for studying the structure 
and, in particular, the near-surface, grain-boundary 
structure of a crystal is available by measuring I(l) .  
Direct measurement of I ( 0  would, in the language of 
X-ray topography, correspond to Bragg-case section 
topographs with an extremely f ine incident-beam 
collimator. Slightly less directly, in the case of traverse 
(projection) topographs, the present work suggests that 
attainment of optimum resolution of near-surface detail 
would involve working away from the extremely 
asymmetric case and using a one-sided slit to eliminate 
all but the low Ill region of I(l) .  Restriction of 
recorded I ( l )  to low Ill would have the added 

advantage that the data should be interpretable, to a 
good approximation, using kinematical theory. More 
generally, one could use a two-sided slit in the 
diffracted beam to give a projection topograph approxi- 
mately corresponding to a given depth band in the 
crystal (see also Lang, 1963). 

It also seems worth noting that the present numerical 
solution scheme offers a very efficient method for cal- 
culating section topographs, one line of a section topo- 
graph [i.e. one I(~) curve ] taking of the order of 6 s on 
the CSIRO Cyber 76 computer (see also Petrashen, 
1976). 

Detailed exploration of the various properties of the 
general mosaic-block model will be presented else- 
where (Wilkins, 1980). 

I am extremely grateful to Dr A. McL. Mathieson 
for arousing my interest in the present problem and for 
continued advice and encouragement in its treatment, 
to Mr A. F. Moodie for helpful discussion, and to Dr S. 
L. Mair for pointing out that PDar/Pl ~ I. 
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